Study Shows Heat Accelerates Negative Effects of California Drought

June 6, 2015
Experiments with a hydrologic model for the period of October 2013 to September 2014 showed that if the air temperatures had been cooler the effects of the drought would have been lessened

Although record low precipitation has been the main driver of one of the worst droughts in California history, abnormally high temperatures have also played an important role in amplifying its adverse effects, according to a recent study by the U.S. Geological Survey (USGS) and university partners.

Experiments with a hydrologic model for the period of October 2013 to September 2014 showed that if the air temperatures had been cooler, similar to the 1916 to 2012 average, there would have been an 86% chance that the winter snowpack would have been greater, the spring-summer runoff higher, and the spring-summer soil moisture deficits smaller.

To gauge the effect of high temperatures on drought, lead author Shraddhanand Shukla of the University of California – Santa Barbara (UCSB) devised two sets of modeling experiments that compared climate data from water year 2014 (October 2013 to September 2014 ) to similar intervals from 1916 to 2012.

In the first simulation set, Shukla substituted 2014 temperature values with the historical temperatures for each of the study’s 97 years, while keeping the 2014 precipitation values. In the second simulation set, he combined the observed 2014 temperatures with historical precipitation values for each of the preceding years, 1916 to 2012. 

“This experimental approach allows us to model past situations and tease out the influence of temperature in preceding drought conditions,” said Chris Funk, a USGS scientist and a co-author of the investigation. “By crunching enough data over many, many simulations, the effect of temperature becomes more detectable. We can’t do the same in reality, the here and now, because then we only have a single sample.” Funk, an adjunct professor at UCSB, helps coordinate research at the university that supports USGS programs.  

High heat has multiple damaging effects during drought, according to the study, increasing the vulnerability of California’s water resources and agricultural industry. Not only does high heat intensify evaporative stress on soil, it has a powerful effect in reducing snowpack, a key to reliable water supply for the state. In addition to decreased snowpack, higher temperatures can cause the snowpack to melt earlier, dramatically decreasing the amount of water available for agriculture in summer when it is most needed.

Although the study did not directly address the issue of long-term climate change, the implications of higher temperatures are clear.

“If average temperatures keep rising, we will be looking at more serious droughts, even if the historical variability of precipitation stays the same,” Shukla said. “The importance of temperature in drought prediction is likely to become only more significant in the future.”

The research was published online in Geophysical Research Letters, a journal of the American Geophysical Union.

Source: U.S. Geological Survey

Sponsored Recommendations

2024 Manufacturing Trends Unpacking AI, Workforce, and Cybersecurity

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

State of Smart Manufacturing Report Series

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

ArmorBlock 5000: Boost Automation Efficiency

April 25, 2024
Discover the transformative benefits of leveraging a scalable On-Machine I/O to improve flexibility, enhance reliability and streamline operations.

Blower Package Integration

March 20, 2024
See how an integrated blower package can save you time, money, and energy, in a wastewater treatment system. With package integration, you have a completely integrated blower ...