Florida’s First Municipal UF Plant for Potable Water

Feb. 25, 2010
Related Searches from WaterInfoLink.com

Ultrafiltration | Palatka, Florida | Layne Christensen

Located 50 miles northwest of Daytona Beach, Fla., the 11,000 residents of the City of Palatka derive their potable water supply from groundwater through multiple wells with varying water qualities. Like many communities in Florida, Palatka’s relatively high water table is subject to the influence of surface water, which manifests itself as elevated organics in the raw well water. Any possibility of infection from these organics is neutralized through disinfection.

Disinfecting organics in water can, however, lead to other issues. Organics can react with disinfectants, forming carcinogenic disinfection byproducts (DBPs) in the form of trihalomethanes (THMs) and haloacetic acids (HAA5).

As early as 2003, Palatka’s commissioners were aware of impending regulatory changes, and that the city was likely to be non-compliant with the EPA’s lower DBP maximum contaminant levels. The commissioners took a proactive stance and planned for the necessary improvements to the R.C. Willis Water Treatment Plant. Assisted by a consulting engineer, Hoyle Tanner & Associates, the city selected a process of air stripping for H2S removal followed by oxidation, enhanced coagulation and then ultrafiltration (UF) for manganese and TOC removal. The city piloted a Norit membrane to remove the organics, and this configuration was used to bid the membrane portion of the project.

Layne Christensen Co. was selected as the system integrator for the 6-million-gal-per-day (mgd) primary UF system with Norit XIGA membranes for potable water production along with a 1-mgd secondary system with Norit Aquaflex membranes for backwash recovery. The membrane systems were fabricated entirely by Layne’s own forces at its 40,000-sq.-ft. fabrication facility in Lakeland, Fla.

After the award, Layne conducted an extensive pilot to validate the performance of the Norit membranes and also to dial in the process and operational parameters of the completed system. The feedwater is not easy to treat since the wells cycle on and off automatically, thus changing the feed quality. The multiple contaminants of TOC, manganese and H2S further complicate the process by requiring different pH levels, chemicals and treatment processes for their removal. The pilot study mimicked the entire process and defined the requirements for advanced monitoring and control to ensure the treated water consistently met its goals and that the final design allowed for ease of operation. Various coagulants, dosages and pH levels were evaluated before the final process was defined. The secondary UF system was also tested on backwash waste from the primary UF pilot.

The system was installed and commissioned in the fall of 2009. Based on the pilot data, the plant was configured for a coagulant dosage of 4 mg/L of alum. The plant’s performance has shown an average TOC reduction of 40%, and the four distribution system sampling points show an average DBP of 55.1 (well below the MCL of 80 µg/L), and all four measurement points are reporting below the MCL, thus achieving the city’s compliance goals for treatment of DBPs, H2S and manganese. The primary and secondary membranes run continuously, only requiring occasional chemically enhanced backwashes to maintain stable trans-membrane pressures, and do not require any offline cleanings.

Sponsored Recommendations

2024 Manufacturing Trends Unpacking AI, Workforce, and Cybersecurity

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

State of Smart Manufacturing Report Series

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

ArmorBlock 5000: Boost Automation Efficiency

April 25, 2024
Discover the transformative benefits of leveraging a scalable On-Machine I/O to improve flexibility, enhance reliability and streamline operations.

Blower Package Integration

March 20, 2024
See how an integrated blower package can save you time, money, and energy, in a wastewater treatment system. With package integration, you have a completely integrated blower ...