Trojan UV Solutions: Closed Vessel Wastewater Reuse

March 1, 2012
UV Disinfection in Lake Arrowhead, Calif.

Project Background

Lake Arrowhead, Calif. is a resort community of approximately 10,000 permanent residents. During the peak summer holiday season, the population often increases to 30,000.

In 2000, the district’s average water demand was 2.3 million gal per day and was estimated to grow over 20% by 2030. Unfortunately, there was not a sufficient or permanent reliable source of supply to meet future demands.

During a multiyear drought that started in 2000, Lake Arrowhead started looking at ways to further protect, preserve and supplement their water resources. After successfully lobbying the State Water Quality Control Board (SWQCB), an amendment was made within the Lahontan Region Basin Plan to allow the use of recycled water for outdoor irrigation at elevations above 3,200 ft (975 meters).

Located in the San Bernardino Mountains with elevations ranging from just below 5,000 ft (1,524 meters) above sea level to 6,000 ft (1,829 meters) above sea level, elevation had been the main challenge facing Lake Arrowhead when trying to effectively reuse its treated wastewater.

With the means to conserve water and the approval to now reuse water for irrigation purposes, Lake Arrowhead needed to upgrade disinfection technologies at the Grass Valley Wastewater Treatment Plant (WWTP) to comply with California Water Recycling Criteria (Title 22). As Title 22 places strict limits on disinfection byproducts and residuals, ultraviolet (UV) disinfection was selected for Grass Valley.

UV disinfection is a physical process and does not generate any carcinogenic disinfection byproducts nor does it impart a chemical residual. Treatment at the Grass Valley WWTP consists of screening, primary clarification, trickling filters, secondary clarification, membrane filtration and UV disinfection. Reuse water would be piped along 15,000 ft (4,572 meters) and boosted up a total of 470 ft (143 meters) from the Grass Valley WWTP to a local golf course at an elevation of 5,280 ft (1,609 meters) above sea level. As membrane technology is being utilized upstream of disinfection, to avoid breaking head, a closed vessel UV system was selected.

The TrojanUV Solution

The closed-vessel, TrojanUVFit was selected by Grass Valley because it carried the lowest cost of ownership in the evaluation. The TrojanUVFit 32AL50 reactor is approved for Title 22 applications by the California Department of Public Health (CDPH). The reactor was validated in accordance to the Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse (NWRI/AwwaRF, May 2003). This provided Grass Valley with further confidence in sizing and disinfection performance. Noneconomic criteria such as experience in reuse and proven installations were also deciding factors and Trojan Technologies ranked highest in this category.

The TrojanUVFit utilizes low-pressure, high-output (LPHO) lamps that are NWRI-validated. The lamp-aging factor accounts for the reduction in UV output over the life of the lamp. A high lamp-aging factor was attained with the TrojanUVFit lamp and was validated by a third party over the guaranteed lamp life of 12,000 hours. Systems are sized to account for the validated lamp-aging factor to guarantee disinfection performance at end of the lamp life (EOLL).

For closed-vessel reactors in wastewater reuse, LPHO lamps have significant advantages compared to medium-pressure lamps. Medium-pressure lamps are polychromatic, generating more visible light and heat. When combined with the high-nutrient loading in wastewater, these factors lead to increased algae production which ultimately hinders disinfection performance and increases maintenance required for closed-vessel reactors. Quartz-sleeve fouling rates are accelerated and operator involvement is required to remove debris and stubborn fouling, even with an automated wiping system.

The TrojanUVFit also comes with a highly accurate UV-intensity sensor. This sensor monitors the UV output of the lamp to ensure adequate UV dose is being delivered within the reactor, thus optimizing energy usage.

With safety being of paramount importance, the TrojanUVFit also utilizes end caps on each reactor to fully isolate the lamp wires from the environment. In addition, a safety switch disconnects power if the end cap is removed.

Source: Trojan Technologies

Sponsored Recommendations

Blower Package Integration

March 20, 2024
See how an integrated blower package can save you time, money, and energy, in a wastewater treatment system. With package integration, you have a completely integrated blower ...

Strut Comparison Chart

March 12, 2024
Conduit support systems are an integral part of construction infrastructure. Compare steel, aluminum and fiberglass strut support systems.

Energy Efficient System Design for WWTPs

Feb. 7, 2024
System splitting with adaptive control reduces electrical, maintenance, and initial investment costs.

Blower Isentropic Efficiency Explained

Feb. 7, 2024
Learn more about isentropic efficiency and specific performance as they relate to blowers.