Vermont Wastewater Treatment Facility to Generate Its Own Heat and Power from Digester Gas

Feb. 28, 2003
The Essex Junction Wastewater Treatment facility in Essex Junction, Vermont has selected Northern Power Systems to engineer, build and install a $245,000 on-site power system that will burn methane gas produced by wastewater processing to generate electricity and heat for the facility. The new cogeneration system will produce over 400,000 kWh of electrical output per year, equivalent to 41 percent of the facility’s current annual demand. At the same time, the system will reduce the plant’s CO2 emissions by over 500,000 pounds (the equivalent of eliminating 42 cars from the road per year). As part of its commitment to removing financing obstacles to such environmentally sound systems, Northern helped the Essex Junction facility obtain grant and rebate assistance for the project from various public and private sources.

The Essex Junction Wastewater Treatment system will use a new controls method developed by Northern Power Systems for the project. The method will enable the facility to conduct peak shaving (reducing metered demand by boosting output kW during short, higher demand times) while monitoring the power and heat requirements of the site. The system is expected to yield a total annual electric utility saving of about $30,000.

The Essex Junction Wastewater Treatment facility processes approximately 1.7 million gallons of wastewater per day from the suburban Burlington communities of Essex Junction, Essex and Williston. The facility also runs a biogas anaerobic digester plant that produces 56,500 therms of methane gas per year. The plant flares 45 percent of this methane gas and burns the other 55 percent in a boiler to heat the digester tanks, accelerate decomposition of the solid waste, and kill off pathogens in the process biosolids. The new system will dramatically increase efficiencies by employing microturbines to burn 99.8 percent of the methane gas, a design that will eliminate the need to flare the previously unused portion. The electricity produced will power pumps, grinders and other process equipment.

The Essex Junction plant will realize significant environmental benefits and energy cost savings by blending the methane with natural gas, which also serves as a back-up gas source in the event of digester maintenance or interruption of biogas supply. Modulating the mix allows the microturbines to conduct peak shaving to a greater extent than if running on methane alone, automatically increasing the output of the microturbines to meet the additional electrical needs. Blending also improves the reliability of the system by stabilizing the fuel input into the turbines.

Through cogeneration, the recovered heat from the turbines will be used to heat the digester tanks and will offset 100 percent of the need to run a boiler for this same purpose.

According to Dan Reicher, executive vice president of Northern Power Systems and former U.S. Assistant Secretary of Energy, the system developed with the Essex Junction facility has widespread applicability nationwide. Reicher, who led a $1.2 billion program to advance energy efficiency, renewable energy and distributed generation, said, "An EPA Clean Water Needs Survey indicates that there are some 3,300 wastewater treatment facilities similar to the Essex Junction plant in the United States. From delivering basic electricity, to cost reductions and reduced environmental impact, this type of system design delivers terrific value for anaerobic digestion wastewater treatment facilities," he added.

The average cost per kWh produced by the system will be 2.46 cents (including annual maintenance expenses), yielding a 6.37-cent savings when compared to the current utility rate. In addition to the energy savings, peak shaving will accrue $4,500 in savings, thereby yielding a total annual electric utility savings of about $30,000.

Based on a national utility average of 1.3 pounds of CO2 emissions per kWh generated, the cogeneration system will offset over half a million pounds of CO2 emissions per year (the equivalent of removing approximately 42 cars from the road per year). Over and above this amount, additional emissions reductions will also be gained from eliminating the flaring of over 25,000 therms of methane per year.

"We are confident that this system will deliver real environmental benefits and drive down electric consumption costs for local ratepayers," said James Jutras, Director of the Essex Junction Wastewater Treatment facility. "It’s a real example of a win-win situation because we’re able to share the benefits with our customers and the surrounding communities," he added.

Efficiency Vermont, a state-run program providing services and products that reduce electric bills and energy-related pollution, contributed $45,000 to the project; Native Energy, a non-profit organization that promotes the development of renewable energy resources, contributed $10,000 by purchasing the green credits generated by the project’s reduced emissions. The project was also supported by the Biomass Energy Resource Center, an independent, non-profit organization in Montpelier, Vermont, that assists in the development of sustainable biomass energy projects across the U.S. and around the world.

Source: Northern Power Systems

Sponsored Recommendations

Blower Package Integration

March 20, 2024
See how an integrated blower package can save you time, money, and energy, in a wastewater treatment system. With package integration, you have a completely integrated blower ...

Strut Comparison Chart

March 12, 2024
Conduit support systems are an integral part of construction infrastructure. Compare steel, aluminum and fiberglass strut support systems.

Energy Efficient System Design for WWTPs

Feb. 7, 2024
System splitting with adaptive control reduces electrical, maintenance, and initial investment costs.

Blower Isentropic Efficiency Explained

Feb. 7, 2024
Learn more about isentropic efficiency and specific performance as they relate to blowers.