Selective Mixing

Jan. 15, 2015
Florida municipality achieves chemical stratification in thermally homogenous water storage tanks

About the author: Dr. Peter S. Fiske is CEO of PAX Water Technologies. Fiske can be reached at [email protected] or 510.550.7100.

undefined

Pinellas County, Fla., is typical of many major metropolitan water systems, with more than 700,000 customers, 2,000 miles of piping and several large water storage facilities. Like many major metropolitan water systems, the Pinellas County Department of Environment and Infrastructure (DEI) has seen a decline in water use over the past decade, both due to active water conservation programs and downturns in the regional economy. This decrease in water use, combined with warm southern temperatures, has increased water age and incidences of nitrification in parts of its chloraminated system.

In 2000, Pinellas County DEI embarked on a major upgrade in anticipation of its conversion to chloramines as a secondary disinfectant and installed passive mixing systems in each of its ground-level water storage tanks. Once the chloramine conversion was complete in 2002, DEI found that nitrification was still an issue in some of its storage tanks. To reduce nitrifying bacteria and biofilm growth, DEI performed a chlorine maintenance (or free chlorine burn) each spring in which the secondary disinfectant was switched from chloramines to free chlorine for several weeks. DEI also increased its flushing, averaging roughly 255 million gal of water per year.

Need for Improvement

In 2009, Pinellas County DEI experienced its earliest recurrence of nitrification after chlorine maintenance in the beach community at the southern end of the county. Despite the presence of passive mixing systems in its tanks, operators at DEI were aware that mixing conditions were not optimal. One indication: As tanks were drained, operators saw a steady drop in chlorine levels, suggesting that the upper layers of water in the tanks were depleted of disinfectant residual. 

“These storage tanks were designed to be full,” said Royce Rarick, senior water plant operator for Pinellas County DEI. “We would watch the residual drop as the tank was pumped out.” Temperature measurements at various levels within the tank rarely showed the presence of thermal stratification, but the variations in chlorine levels (and the episodes of nitrification) strongly suggested that the existing mixing systems were unable to maintain homogeneous water chemistry.

Anticipating further decreases in water demand due to the loss of a secondary water customer, DEI asked Jones Edmunds & Associates Inc. to study its distribution system and propose infrastructure and operational improvements to reduce the risk of nitrification and the need for large bulk water turnover by flushing. Jones Edmunds recommended the use of active mixers to improve mixing in the storage tanks and contacted Utility Service Group to set up a demonstration test using an active mixer. Unlike passive mixing systems, which only introduce momentum into the tank during the fill cycle, active mixing systems operate 24/7, creating a powerful flow pattern within the tank and ensuring uniform distribution of disinfectant residual. 

Trial & Error

In order to confirm that active mixing would be sufficient to overcome the chemical stratification inside the tanks, Pinellas County DEI conducted a performance trial in which temperature and residual were monitored. Two 5-million-gal tanks at the North Booster Pump Station were selected. An active mixer was installed in one tank and the other tank was left as a control. Both tanks were filled and drained only from their outlet sumps, simulating worst-case hydraulic conditions inside the tanks. Temperature probes were installed and grab samples were taken from the bottom, middle and top of each tank every day over a one-week period. 

Initially, when the active mixer was installed, power was inadvertently set to only 50% of its total power rating. The temperature data showed only slight differences in thermal stratification between the control tank and the actively mixed tank. The control tank showed slightly more thermal stratification at the top of the tank, but the magnitude was small, averaging only 0.2°C during the study. From the temperature data alone, both tanks would appear to be sufficiently mixed. 

It was the chlorine residual data that told the real story. In the control tank, residual chlorine quickly became stratified, with levels 0.5 to 0.9 ppm lower at the top of the tank compared to the bottom. In the actively mixed tank, however, chlorine residual levels were within 0.1 ppm of each other. The data revealed that while thermal conditions remained relatively uniform, significant chemical stratification quickly developed. The active mixer was able to restore homogeneous chlorine distribution throughout the tank. 

In a 2013 Florida Water Resources Conference presentation, Jones Edmunds reported their findings: Significant chemical stratification can exist inside water tanks that show little or no thermal stratification. The active mixing system installed in the 5-million-gal tank was able to eliminate the chemical stratification even with the worst-case inlet/outlet conditions. 

“The most impressive part is that even at 50% of the mixer’s total power rating, it still provided great performance,” said Chris Baggett, senior engineer for Jones Edmunds.

By the end of 2013, Pinellas County DEI had installed active mixers in eight tanks. Active mixing was not the only recommendation made by Jones Edmunds and adopted by Pinellas County DEI, though. Operational levels in some of the water storage tanks were lowered to reduce water age, and pressures were adjusted in some parts of the distribution system to improve flows. Managers also added a second chlorine maintenance event at the end of the warm season and one water storage tank was taken offline. As a result, Pinellas County DEI saw a substantial reduction in its flushing. From 2011 to 2013, monthly flushing rates averaged 35 million gal during the first half of the year, whereas in 2014, monthly flushing rates averaged just 17 million gal for the same time period (just below Pinellas County’s target of 20 million gal per month).

Download: Here

Sponsored Recommendations

Blower Package Integration

March 20, 2024
See how an integrated blower package can save you time, money, and energy, in a wastewater treatment system. With package integration, you have a completely integrated blower ...

Strut Comparison Chart

March 12, 2024
Conduit support systems are an integral part of construction infrastructure. Compare steel, aluminum and fiberglass strut support systems.

Energy Efficient System Design for WWTPs

Feb. 7, 2024
System splitting with adaptive control reduces electrical, maintenance, and initial investment costs.

Blower Isentropic Efficiency Explained

Feb. 7, 2024
Learn more about isentropic efficiency and specific performance as they relate to blowers.